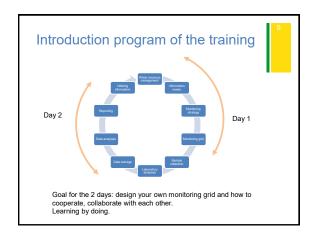
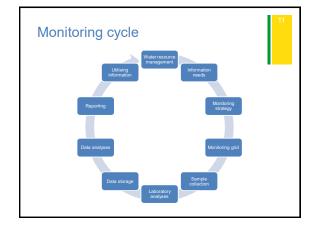
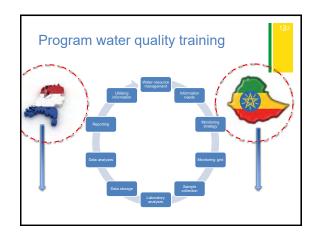

Training Module on Water Quality Monitoring

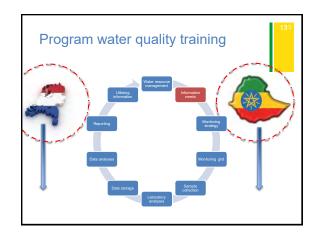


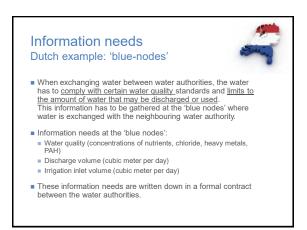


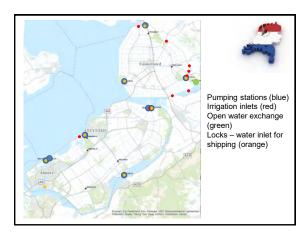
 Focus on catchment management, land use and re-use of water This is our experience in the Netherlands




Putch Water Authorities (DWA)

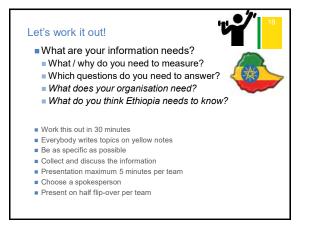


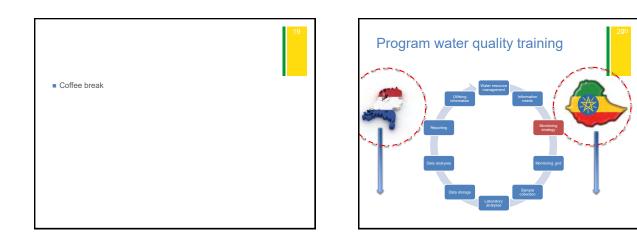


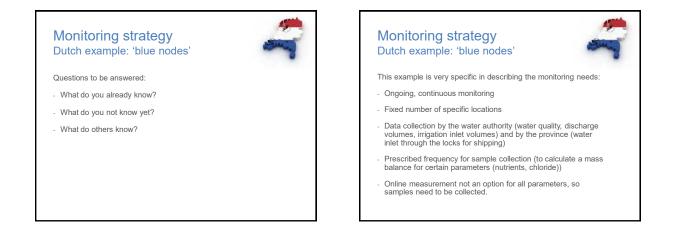


Information needs Some other Dutch examples: General water quality (test against water quality standards) General water quality (test against water quality standards) Trend analyses (is the quality getting better or getting worse) Specific uses: is the water suited for the production of drinking water? is it safe for cattle to drink? is it safe to the irrigation of certain crops? is it safe to bath or swim in? Effect of measures taken: Wat is the effect of measures taken to improve water quality?

Let's work it out!



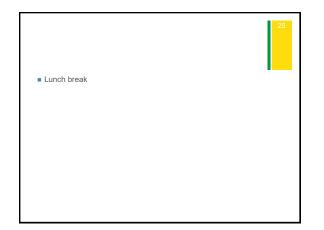

What are your information needs?

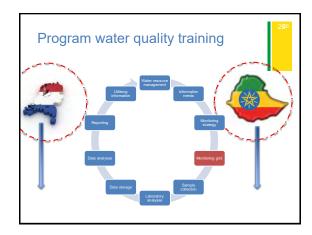

- What / why do you need to measure?
- Which questions do you need to answer?
- What does your organisation need?
- What do you think Ethiopia needs to know?

In three groups :

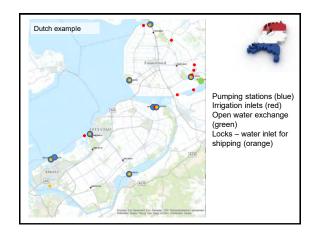
What are your information needs?

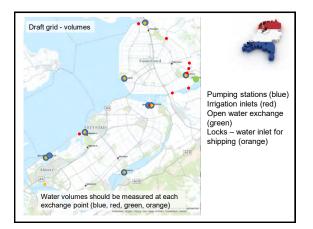
Let's work it out!

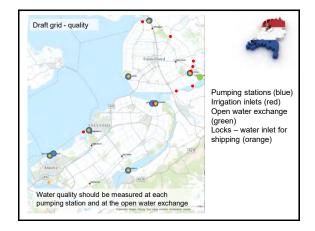



What is your monitoring strategy?

- What information do we already know? (in answers to the questions/information needs)
- Is data already being collected? (in relation to the information needs) by yourself, by others?
- Is almost similar data collected that can be used? What data?
- Are there alternatives? Which alternatives?

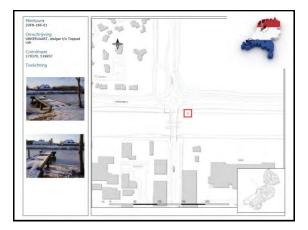

Present on half flip-over per team

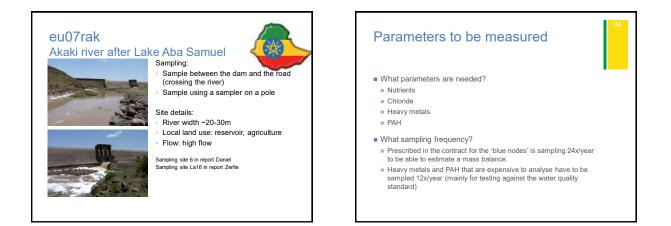




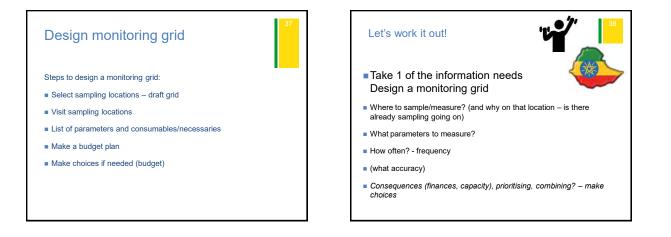
Design monitoring grid Steps to design a monitoring grid: Select sampling locations – draft grid

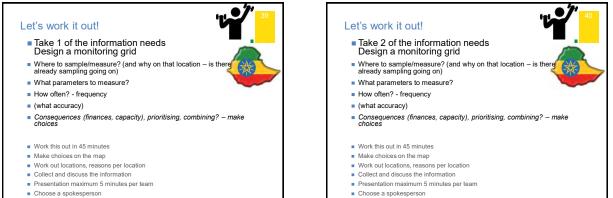
- Visit sampling locations
- List of parameters and consumables/necessaries
- Make a budget plan
- Make choices if needed (budget)

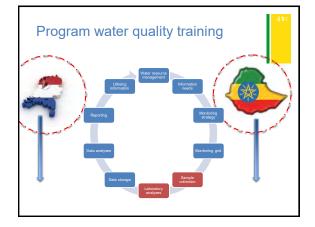


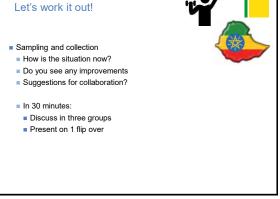


Visit sampling locations Is the location suited for measurements? Is it possible to do the measurements here? Is it safe to sample here?

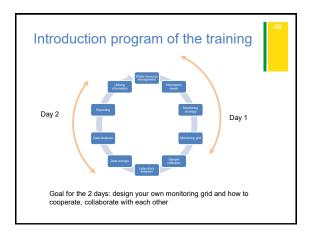

- Can the location be reached easily?
- Do you need permission to get here?
- Document where samples are to be taken:
 - Description
 - Coordinates
 - Pictures, map
 - Contact information for permission (if needed)




Budget plan	4
Sampling: 24x EUR 480,- =	EUR 11.520,-
Transportation: 24x EUR 50,- =	EUR 600,-
 Cost of analyses: nutrients: 24*10*EUR 60,- = chloride: 24*10*EUR 20,- = Heavy metals: 12*10*EUR 80,- = PAH: 12*10*EUR 135,- = 	EUR 14.400,- EUR 4.800,- EUR 9.600,- EUR 16.200,-
Cost of reporting: 5 days @ EUR 480,- =	EUR 2.400,-
Total:	EUR 59.520,-


- Present on 1 map & 1 flip-over per team

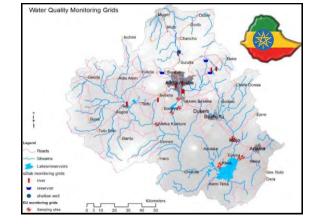
Present on 1 map & 1 flip-over per team



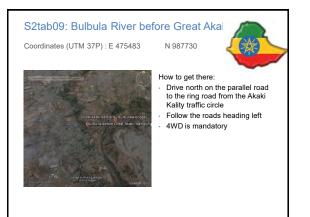
Monitoring S2TAB Surface water

Recap of Day 1, using Monitoring grid S2TAB as example.

- Information needs:
- What is the current environmental state
- What are the biggest water quality problems



Monitoring S2TAB Surface water



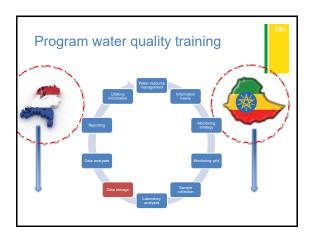
Steps to design a monitoring grid:

- Select sampling locations draft grid
- Visit sampling locations

	Water Quality Monitoring	Grids			
		Loca	ation		1
Code	Name	х	Y	Туре	6 2
	s2tab sampling grids				
s2tab01	Sibilu 01 right stream	472380	1016949	River	
s2tab02	Sibilu 02 left stream	472246	1016953	River	
s2tab03	Handdug well (mr. Dereje)	473050	1017940	Shallow well	
s2tab04	Dire reservoir	492600	1011328	Reservoir	
s2tab05	Inlet to legadadi from Sendafa catchment	500285	1004950	River	
s2tab06	Laga Bari	496510	1004274	River	
s2tab07	Laga Dadi reservoir	495818	1002334	Reservoir	
s2tab08	Bulbula on Bole Road	475534	993983	River	
s2tab09	Bulbula before G. Akaki	475483	987730	River	
s2tab10	G. Akaki before Bulbula	476161	987768	River	
s2tab11	Gefersa reservoir	460690	1001985	Reservoir	
s2tab12	L. Akaki before Kera	470531	991822	River	
s2tab13	Kera before little Akaki	470929	991998	River	
s2tab14	Awash malka bal'o on Jimma road	435038	977956	River	
s2tab15	Sebeta south of Sebeta town	457635	981044	River	
	EU ongoing sampling grids				
EU01raw	Awash river after Lake Koka	519565	937179	River	
EU02raw	Lake Koka at Koka Dam	517164	935985	Reservoir	
EU03Iko	Awash river before Lake Koka	502310	929380	River	
EU04rmo	Mojo river before Lake Koka	503037	931867	River	
EU05rmo	Mojo river before Mojo (railroad tracks)	512621	951938	River	
EU06rmo	Mojo river at the end of Mojo	511973	949990	River	
EU07rak	Akaki river after Lake Aba Samuel	467851	971311	River	
EU08rga	Great Akaki river before Lake Aba Samuel	473256	975027	River	
EU09rla	Little Akaki river before Lake Aba Samuel	472424	981849	River	

Monitoring S2TAB


Surface water - parameters to be analys


- DO, pH, Temperature, EC, Turbidity (field measurements)
- CI, F, SO4 (anion)
- NO3, NO2, NH4, (NH3), total-N, PO4, total-P (nutrients)
- As, Cd, Cr, Cu, Hg, Ni, Pb, Zn (heavy metals)
- BOD (biochemical oxygen demand)
- COD (chemical oxygen demand)

Monitoring S2TAB Surface water Steps to design a monitoring grid: Select sampling locations – draft grid Visit sampling locations List of parameters and consumables/necessaries Make a budget plan Available hardware budget R2.5 + R2.8 = EUR 40,000.Available days EPHI R2.5 and R2.8 = 900 days Roughly halve for R2.5 and halve for R2.8 Make choices if needed (budget)

Monitoring S2TAB Surface water - Budget Plan Sampling (4 rounds) 96 days EUR 4,300.- (cost for car) Analysis (4 rounds) 280 days List of Instruments Hydride cystem for As & Hg Lamps for As & Hg with standards Graphite tube Graphite Insert No Price 16,000€ 1,200€ 4,500€ 750€ Argon & Acetylene gas 417€ 2500€ 1,000€ Sampling & BOD Bottle 3,00€ DO mete 10 TDS/Turbidity/Ec multiple measuring Kit 600 € 27,297€ 10,097€ Total

Data in spreadsheets (1/2)

Matrix format

- Very compact
- Works great for project data (like lab reports)
- Little information in the file on how a value was measured
- Difficult to use when combining data from different sources / matrix formats

5	UTINE	UTMN	Local Name	WP Index	EC	TDS	T	pH	NH4	Net	K+	Catt	Mg++	Fe total	M1++	a-	NO2
	465578	9999808	Asko BH	AA010	341	206		8,64		76	2,6	3,52	1,08			7,94	
ı	469191	\$89547	Lebu mekanisa	AA002	309	200		7,28		22	8,3	37	11,2	0,07		5,96	6
	471500	990500	Lafto BH 1	AA007	438	280		7		13,8	5,2	65,6	10,3			9,93	0,00
ı	466601	1001250	MIKLILAND-3	AA013	147	98		6,87	0,24	12,7	4,1	13,2	2,7	0,52		1,8	
•	477715	207474	YeKA Mikevel Church	AA008	284	182		7.31		29.5	6.4	26.4	4.32			9.93	
i	463972	1000788	BH2	AA009	280	190		8.29		50	3.7	14.1	3.24	0.29		2.88	
,	480000	999648	Salayish	AA005	464	308		7,38		62	5	33,6	8,16	0.09		21,9	0,00
5	965741	989188	Mekanisa BH 16	AA014	344	226		7,05		17	6,8	46,6	9,18	0,08		5,98	0,1
	468261	990357	Mekanisa-19	AA015	295	194		7,71		14,5	5.7	42,2	9,18	0,04		1,99	0,5
	487268	995400	Aval-1	AA017	524	344		7.42	0.39	77	22	16.6	3.24	0.27		32.8	
i	470218	1001886	Belay Zeleke-2	AA018	209	138		7.61		38	4.3	9.24	2.04	0.16	0.02	5.96	
ï	481462	998906	Ankorcha-2	AA019	414	272		7.24		30.5	3.2	53.8	10.7	0.28	0.05	7.94	
	482994	998429	Luke Stream	AA020	213	142		6,87		9,8	3,4	27,7	4,50	0,12	0,1	8,94	0,14
ī	484971	224872	Summit SMV- 13	AA054	1904	1394		6.5		495	24.5	25.2	5.61	0.19		47.7	
•	472608	1002066	Ketchene Mekebeya	AA021	194	128		6.88		2	4.3	25.2	5.1	0.58	0.05	6.95	0.00
i	474238	1002370	Sheromeda Kidanemihret	AA022	234	154		7.74		19	7.4	22.7	4.08	0.05		7.94	0.00
i	470504	1002135	Total Belay Zeleke-1	AA023	181	128		7.34		24	5.5	12.6	2.04	0.47	0.05	1.99	0.0
	465741	\$89188	Repi-23	AA027	265	174		7		10.4	4.5	36.1	9.18	0.1		2.91	
	481519	000648	Selam Technique	AA029	422	282		7.39		55	4.6	35.3	8.16	0.29	0.05	10.9	0.0

Data in spreadsheets (2/2)

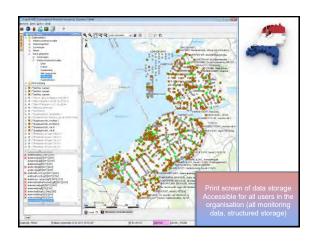
Listing format

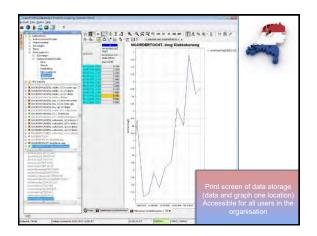
- Uses a lot of redundant information (more work)
- More info on how a value was measured
- Better suited for combining data from different sources

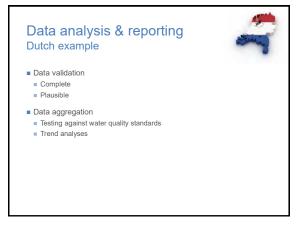
5		sample description	UTME		(european)	sample date (ethiopian)	Sime	parameter				Ţ			Analyses method used		Æ	e of lysie cope
	EH007	Cxample samplepoint	466601	1001250	24-4-2013		14:00		m/n		lake	\downarrow	147			EU WEE		80.
		Example samplepoint	466601	1001250	24-4-2013		14:00		NTU	no	lake	Ц	EVEC 1			EU WEE	1	0
	EX007	Example samplepoint	466601	1001250	24-4-2013		14:00		оC	no	lake		upring		Wagtech_T	EU WEE		0
	D1007	Example samplepoint	466601	1001250	24-4-2013		14:00		-	no	lake		bka deegay		Wagtech_pH	EU WEE		0
	D1007	Cxample samplepoint	466601	1001250	24-4-2013		14:00		mg/l		lake	Ц				EU WEE		0
	EH007	Example samplepoint	466601	1001250	24-4-2013		14:00		mg/l	yer	lake	Ц	dinam.			EU WEE		
	D1007	Example samplepoint	466601	1001250	24-4-2013		14:00		ng/l	yes	lake				photo_\$2003	EU WEE		03
	D1007	Example samplepoint	466601	1001250	24-4-2013		14:00		ng/l	yes	lake				photo_\$2004	EU WEE		03
	EX007	Cxample samplepoint	466601	1001250	24-4-2013			Me++	mg/t	yes	lake				photo_80005	EU WEE		
	D1007	Example samplepoint	466601	1001250	24-4-2013			Fe total	mg/l	yer	lake		0,52		photo_80006	EU WEE		
	D1007	Cxample samplepoint	466601	1001250	24-4-2013				mg/l	yes	lake		0,01	ć.		EU WEE		03
	D1007	Example samplepoint	466601	1001250	24-4-2013		14:00		ng/l	no	lake		1,8			EU WEE		03
	D1007	Example samplepoint	466601	1001250	24-4-2013		14:00		ng/l	no	lake		0,02	<		EU WEE		03
	DI007	Cxample samplepoint	466601	1001250	24-4-2013		14:00		mg/l	no	lake		8		photo_80010	EU WEE		03
	D1007	Cxample samplepoint	466601	1001250	24-4-2013		14:00		mg/l	no	lake		1,4		photo_90011	EU WEE		
	D1007	Cxample samplepoint	466601	1001250	24-4-2013				mg/l	no	lake		\$7,94		titration_1	EU WEE		
	Ex007	Example samplepoint	466601	1001250	24-4-2013			CO3	mg/l	no	lake		-			EU WFF	T	07-
2	D1007	Example samplepoint	466601	1001250	24-4-2013	1	14:00	504	mg/l	no	lake		4,65		titration_3	EU WEE	T.	07-
9	D1007	Example sampleppint	466601	1001250	24-4-2013		14:00	PO4	me/l	no	lake		0.129		titration 4	EU WEE		07-
à	06002	Complex complements	10000	1001260	24.4.2012		14:00	Total Hards	mmold		later.				Advention 5	ELLWEE	т.	-

Data storage Dutch example

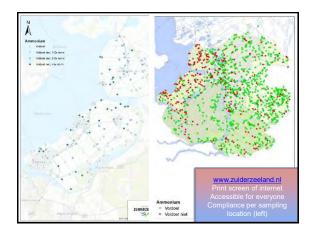
- For the Zuiderzeeland area:
- Before 1973 > analogue reports
- Data in databases dating starting from 1973
- Prior to 1998: each organisation it's own standard
- 1998-2011: use of a computer program 'iBeVer' as some kind of standard for exchanging water quality data
- After 2012: a web service based on a data exchange format open standard

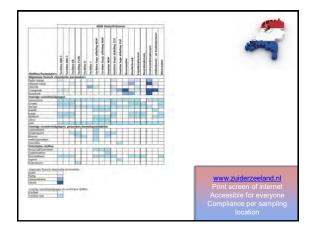



Let's work it out! Sampling and collection (1 group) How is the situation now? Do you see any improvements Suggestions for collaboration? Data storage (2 groups) How is the situation now with data storage? Where can you find more information about the current situation? If you dream – what do you want to reach, when and

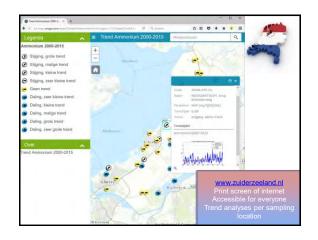

how?
What's your first step to reach this – what's your intermediate goal

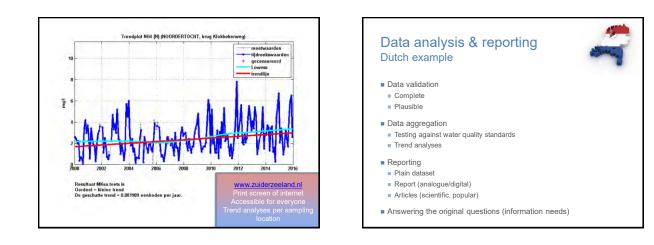
Data analysis & reporting Dutch example Data validation Complete Plausible

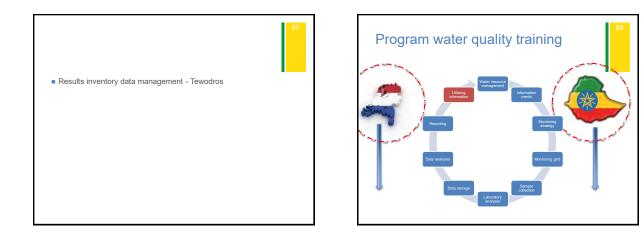






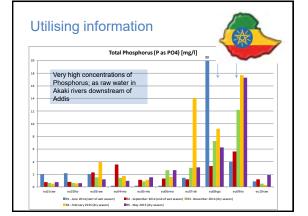


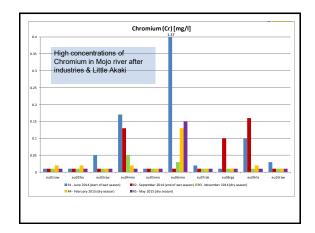




		85
LUNCH		

	86
Results water quality monitoring S2TAB – Tsigereda	

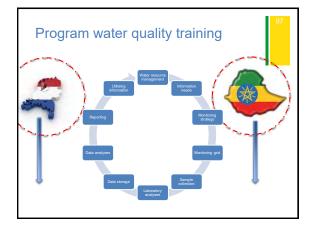


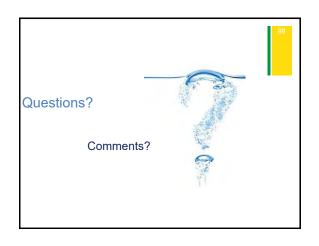

Utilising information Dutch example – Blue nodes

- In the example the report is just a completed and validated dataset. No testing, trend analyses, interpretation. Utilising is left for the recipient of the dataset who will do more reporting steps:
 Combine the dataset with other data
 - Test if water quality standards are met
 - Calculate a mass balance
- Discuss the results together, if needed define action plan together

Utilising information Dutch example – exceeding standard

	Current situation - Analogue data - Monitoring data
ы	Issues - Water quality issues - other issues
Shared ambition	Causes – caused by -Polluters (domestic, agriculture/industry)
Share	Solutions/measures – long list of measures To improve To solve other issues Water quality on Domestic, industry,
	agriculture/diffuse
	Prioritising measures -Effectiveness -Costs -roadmap


Let's work it out!



- How do we share results/information between organisations?
- How do we do it right now?
- How would you like it to be what's your goal?
- What's your first step to reach it?

In three groups

Let's work it out! How do we share results/information between organisations? How do we do it right now? How would you like it to be – what's your goal? What's your first step to reach it? In three groups Work this out in 20 minutes E verybody writes topics on yellow notes Be as specific as possible Collect and discuss the information Presentation maximum 5 minutes per team Choose a spokesperson Present on half flip-over per team

